ANALOG AND DIGITAL SIGNAL PROCESSING ADSP - Chapter 8

$$
F m=\sum_{n=0}^{N-1} f(n \cdot T) \cdot e^{\frac{-j \cdot 2 \cdot \pi \cdot m \cdot n}{N}}
$$

$$
\left(\begin{array}{l}
X(0) \\
X(2) \\
X(1) \\
X(3)
\end{array}\right)=\left(\begin{array}{cccc}
1 & w^{0} & 0 & 0 \\
1 & w^{2} & 0 & 0 \\
0 & 0 & 1 & w^{1} \\
0 & 0 & 1 & w^{3}
\end{array}\right) \cdot\left(\begin{array}{cccc}
1 & 0 & w^{0} & 0 \\
0 & 1 & 0 & w^{0} \\
1 & 0 & w^{2} & 0 \\
0 & 1 & 0 & w^{2}
\end{array}\right) \cdot\left(\begin{array}{l}
x_{0}(0) \\
x_{0}(1) \\
x_{0}(2) \\
x_{0}(3)
\end{array}\right)
$$

Chapter 8 Discrete Fourier Transform (DFT), FFT

 Introduction to discrete Fourier tra Time-limited signal made periodic Negative aspect and solutior of the Mathematic al approrc' Balic conc ${ }^{2}{ }^{+}$
n.itive development

AJFi:llons

Cnoosing the sampling frequency Windowing - Blind FFT output interpretation Problems

INTRODUCTION TO DISCRETE FOURIER TRANSFORM:

Basic concept:

In previous chapters, we dealt with the Fourier Series and the Fourier Transforms of continuous waveforms. When it comes to computing one of them from a real signal (continuous or discretized), we face a practical problem:

Time limitation!

\rightarrow In most situations we exactly know our signal within a time-window starting at t_{1} and ending at t_{2}; however, we totally ignore what happened before t_{1} and what will happen after t_{2}.

SOLUTION: To make PERIODIC the "Time limited" signal

 Example 1:Signal made PERIODIC with period $T\left(T=t_{2}-t_{1}\right)$

Example 1 cont'

Decaying sine-wave approximate frequency: 1000 Hz (10 samples/cycle)
256 samples for 1 period of the periodic signal $\rightarrow T=100 \mu \mathrm{~s} \cdot 256=25.6 \mathrm{~ms}(\approx 40 \mathrm{~Hz})$
Fourier Series coefficient magnitudes:

Potential problems due to the time-limited signal made periodic:
Discontinuities \rightarrow Generate unwanted high frequencies components

Example 2:

ingénierie
saintimier le locle
Example 3: Pure sine-wave a) Integer number of periods 8 kHz sine-wave \swarrow Acquisition window

Sampling frequoticy: fs $=1.024 \mathrm{MHz}$, number of S̀ąmples: $\mathrm{N}=1024$

Example 3: Pure sine-wave b) Non-integer number of periods
7.5 kHz sine-wave

Tw: acquisition time window, ts: sampling interval $\rightarrow T w=N \cdot t s=N / f s$
\Rightarrow Fundamental frequency: $\Delta f=1 / \mathrm{Tw}=\mathrm{fs} / \mathrm{N}=1 \mathrm{kHz}$

Magnitude of Fourier Coefficients

Discontinuities in the time-domain \rightarrow many spectral components

SOLUTION: WINDOWING

WINDOWING DOWNSIDE:

Frequency domain convolution of the "window spectrum" with the signal spectrum!
\rightarrow Broadening of the signal spectrum
$\rightarrow X(j \omega) * W(j \omega)=X W(j \omega)$

MATHEMATICAL APPROACH OF THE DFT

Basic concept:

If $f(t)$ is our continuous waveform, $f d(t)$ is its discretized version:

$$
f(t) \rightarrow f d(t)=\sum_{n=-\infty}^{\infty} f(n \cdot t s) \cdot \delta(t-n \cdot t s)
$$

Where $\boldsymbol{t s}$ is the time between consecutive samples. By definition, the Fourier Transform of $\mathrm{fd}(\mathrm{t})$ is:

$$
F(f d(t))=F d(\omega)=\int_{-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f(n \cdot t s) \cdot \delta(n-n \cdot t s) \cdot e^{-j \omega \cdot t} d t
$$

$$
F d(\omega)=\sum_{n=-\infty}^{\infty} f(n \cdot t s) \cdot e^{-j \omega \cdot n t s}
$$

Previously, we introduced a time-limitation. The simplest way to do this is to set the lower bound of the summation at 0 and the upper bound at $\mathrm{N}-1$, thus limiting the total number of samples considered to N. Rewriting Fd(ω) gives:

$$
F d w(\omega)=\sum_{n=0}^{N-1} f(n \cdot t s) \cdot e^{-j \cdot \omega \cdot n \cdot t s} \quad \text { WDFT }
$$

The letter W used to characterize this new definition refers to 'window' since our discretized waveform $f(n \cdot t s)$ is effectively windowed, that is, multiplied by a time-window function. In order to illustrate the implication of the WDFT, consider a pulse represented by 8 equally spaced samples $(\mathrm{N}=8)$:

From this set of samples, we get the following spectrum (with $t s=1$) :

The periodicity in ω comes from the sampling theorem (period: $2 \pi / \mathrm{ts}=\omega_{\mathrm{s}}$). Since the theoretical Power Spectrum (from its Fourier transform) of a pulse expend from $-\infty$ to $+\infty$, that produces a noticeable aliasing (blue) !

So finally, we can write the DTFS or DFT in the most common form as:

$$
F\left(\frac{2 \cdot \pi \cdot m}{N \cdot t s}\right)=F(m)=\sum_{n=0}^{N-1} f(n \cdot t s) \cdot e^{\frac{-j 2 \cdot \pi \cdot m \cdot n}{N}} \quad \text { DFT }
$$

The inverse DFT is:

$$
f(n \cdot t s)=\frac{1}{N} \cdot \sum_{m=0}^{N-1} F(m) \cdot e^{\frac{j \cdot 2 \cdot \pi \cdot m \cdot n}{N}} \quad \text { InvDFT }
$$

As already mentioned in the beginning of this chapter, due to the limited number of samples used in the computation of the WDFT, numerous problems can appear that one has to be aware of.

SIMPLE DFT APPLICATIONS \#1 (integer number of cycle)

$f(t)=\cos (2 \pi t)$; a cosine function with a period of 1 s , sampled every $t s$ second, $T w=t s \cdot(N-1)$
$N=16, t s=1 / 16 \rightarrow T=1 s$

$$
F_{m}:=\sum_{n=0}^{N-1} \cos (2 \cdot \pi \cdot n \cdot t s) \cdot e^{\frac{-j \cdot 2 \cdot \pi \cdot m \cdot n}{N}}
$$

m

SIMPLE DFT APPLICATIONS \#2 (non-integer number of cycle)

$$
f(t)=\cos (2 \pi t) ; N=16, t s=1 / 12 \rightarrow T w=1.25 s
$$

$$
F_{m}:=\sum_{n=0}^{N-1} \cos (2 \cdot \pi \cdot n \cdot t s) \cdot e^{\frac{-j \cdot 2 \cdot \pi \cdot m \cdot n}{N}}
$$

Since the number of periods used to compute the WDFT is not an integer number, a discontinuity in the time domain is created, thus generating artifacts (unwanted high frequencies spectral components) in the power spectrum.

In order to solve this problem, various "window" types have been proposed, each one of them with particular benefits and draw-backs!! The optimum choice will depend upon the features one wishes to emphasize.

FAST FOURIER TRANSFORM (FFT)

The FFT is simply an algorithm that can compute the discrete Fourier transform much more rapidly than other available algorithms. In the case of the DFT, the approximate number of multiplication grows with the square of N. If N can be written as 2^{K} (where K is an integer), a substantial saving can be achieved on the number of multiplication which becomes in the order of : $\mathbf{2 N} \log _{2} \mathbf{N}$. Many algorithms have been designed and the interested reader is encouraged to refer to one of the classical text books covering this topic. A simple matrix factoring example is used to intuitively justify the FFT algorithm.

Matrix formulation

Consider the discrete Fourier transform:

$8-2 \quad W=e^{\frac{-j \cdot 2 \cdot \pi \cdot m \cdot n}{N}}$
(8-1) describes the computation of N equations. Let $N=4$ and
8-2

(8-4) reveals that since \mathbf{W} and $\mathbf{f}_{\mathbf{o}}(\mathbf{n})$ are complex matrices, thus N^{2} complex multiplication and $\mathrm{N}(\mathrm{N}-1)$ complex additions are necessary to perform the required matrix computation.

INTUITIVE DEVELOPMENT

To illustrate the FFT algorithm, it is convenient to choose the number of sample points of $f_{0}(n)$ according to the relation $\mathbf{N}=\mathbf{2}^{\gamma}$, where γ is an integer. The first step in developing the FFT algorithm for this example is to rewrite (8-4) as:
8-5 $\left(\begin{array}{l}F(0) \\ F(1) \\ F(2) \\ F(3)\end{array}\right)=\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & W^{1} & w^{2} & w^{3} \\ 1 & w^{2} & w^{0} & w^{2} \\ 1 & w^{3} & w^{2} & w^{1}\end{array}\right) \cdot\left(\begin{array}{l}f_{0}(0) \\ f_{0}(1) \\ f_{0}(2) \\ f_{0}(3)\end{array}\right)$

Matrix Eq. (8-5) was derived from (8-4) by using the relationship $\mathbf{W}^{m \cdot n}=\mathbf{W}^{m \cdot n} \bmod (N)$. Than: $8-6 \quad \mathbf{W}^{6}=\mathbf{W}^{2}$

The next step is to factor the square matrix in (8-5) as follows:

$$
\text { 8-7 }\left(\begin{array}{c}
F(0) \\
F(2) \\
F(1) \\
F(3)
\end{array}\right)=\left(\begin{array}{cccc}
1 & w^{0} & 0 & 0 \\
1 & w^{2} & 0 & 0 \\
0 & 0 & 1 & w^{1} \\
0 & 0 & 1 & w^{3}
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & w^{0} & 0 \\
0 & 1 & 0 & w^{0} \\
1 & 0 & w^{2} & 0 \\
0 & 1 & 0 & w^{2}
\end{array}\right) \cdot\left(\begin{array}{c}
f_{0}(0) \\
f_{0}(1) \\
f_{0}(2) \\
f_{0}(3)
\end{array}\right)
$$

The method of factorization is based on the theory of the FFT algorithm. It is easily shown that multiplication of the two matrices of (8-7) yields the square matrix of (8-5) with the exception that rows 1 and 2 have been interchanged (the rows are numbered $0,1,2$ and 3).

Element $f_{2}(1)$ is computed by one addition because $W^{0}=-W^{2}$. By similar reasoning, $f_{2}(2)$ is determined by one complex multiplication and addition, and $f_{2}(3)$ by only one addition. Thus:

- Computation of $\mathbf{F (m)}$ by means of Eq. (8-7) requires a total of:
four complex multiplication and eight complex additions
- Computation of $F(m)$ by $(8-4)$ requires:
sixteen complex multiplication and twelve complex additions
However, the matrix factoring procedure does introduce one discrepancy. That is:

$$
\text { 8-13 } \operatorname{Fscrab}(m)=\left(\begin{array}{l}
F(0) \\
F(2) \\
F(1) \\
F(3)
\end{array}\right) \quad \text { instead of } \quad F(m)=\left(\begin{array}{l}
F(0) \\
F(1) \\
F(2) \\
F(3)
\end{array}\right)
$$

This rearrangement is inherent in the matrix factoring process and is a minor problem because it is straightforward to generalize a technique for unscrambling Fscrab(m) and obtain $F(m)$.
Thus, if N can be written as 2^{K} (where K is an integer), a substantial saving can be achieved on the number of multiplication which becomes in the order of : $2 \mathrm{~N} \log _{2} \mathrm{~N}$.

APPLICATIONS \#1 ChOosing the SAmpling frequency

Analog and Digital Signal Processing

APPLICATIONS

\#2 WINDOWING
No-window after windowing (Hanning)
fs $=15 \mathrm{kHz}, 2048$ samples
(0) $1.1 \mathrm{kHz}, 50 \mathrm{~V}$ (sinus)
(3) $100 \mathrm{~Hz}, 1 \mathrm{~V}$ (square-wave)

21

APPLICATIONS \#3 ACQUISITION WINDOW (Tw) LENGTH

fs $=15 \mathrm{kHz}, \mathrm{X}$ samples
(0) $1.1 \mathrm{kHz}, 50 \mathrm{~V}$ (sinus)
(3) $100 \mathrm{~Hz}, 1 \mathrm{~V}$ (square-wave)

APPLICATIONS \#4 |FFT| $\rightarrow \mid$ |FFT $\left.\right|^{2} \rightarrow$ Power Spectrum

300 Hz square-wave, 1Vpp - sampling frequency : 15 kHz

PROBLEMS

Problem 8.1

In p.8-14, prove that $\left|F_{1}\right|=8$

Problem 8.2

With $f(n T)=\delta(t-5 T)$ and $N=16$, determine $\left|F_{m}\right|$ for $0 \leq m<8$

Problem 8.3

With $N=8$, compute the module, the real and imaginary part of $F(m)$ for $0 \leq m<4$

$$
f(0)=f(2)=f(4)=f(6)=1 \text { and } f(1)=f(3)=f(5)=f(7)=-1
$$

Problem 8.4 (SystemView)

The input signal $x(t)$ of an acquisition system has the following form :
$x(t)=A \sin \left(\omega_{0} t\right)+B \operatorname{Sqw}(t), \quad S q w(t):$ symmetrical square-wave of 1 ms period
The sampling rate (fs) can be chosen between 50 kHz and 100 kHz and f_{0} is smaller then 10 kHz .
Draw several possible FFT plots (magnitude) you may obtain when varying the following parameters:
fs, N, with and without windowing, $f_{0}, \quad A / B$

PROBLEMS

Problem 8.5 (SystemView)

The input signal $x(t)$ of an acquisition system has the following form :
$x(t)=A \sin \left(\omega_{0} t\right)+B \sin \left(\omega_{1} t\right)+C \sin \left(\omega_{2} t\right)+D \sin \left(\omega_{3} t\right)$
with $\mathrm{f}_{0}=1 \mathrm{kHz}, \mathrm{f}_{1}=\mathrm{f}_{0}+\Delta \mathrm{f}, \mathrm{f}_{2}=\mathrm{f}_{1}+\Delta \mathrm{f}, \mathrm{f}_{3}=\mathrm{f}_{2}+\Delta \mathrm{f}, \quad \Delta \mathrm{f}=50 \mathrm{~Hz}$
$\mathrm{A}, \mathrm{B} C$ and D can take the following values: +1 or 0 (constant over the sampling window)
Assume that $\mathrm{fs}=1 / \mathrm{T}=12 \mathrm{kHz}$, how do you choose N ?
Problem 8.6

Problem 8.7

