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ANALOG AND DIGITAL SIGNAL PROCESSING
ADSP - Chapter 8
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Chapter 8  Discrete Fourier Transform (DFT), FFT

Introduction to discrete Fourier transform
Time-limited signal made periodic
Negative aspect and solution of the periodicity

Mathematical approach to the DFT
Basic concept 
DFT application example

Fast Fourier transform (FFT)
Matrix formulation - Intuitive development

Applications
Choosing the sampling frequency
Windowing - Blind FFT output interpretation

Problems
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INTRODUCTION TO DISCRETE FOURIER TRANSFORM:
Basic concept:
In previous chapters, we dealt with the Fourier Series and the Fourier Transforms of
continuous waveforms. When it comes to computing one of them from a real signal
(continuous or discretized), we face a practical problem:

In most situations we exactly know our signal within a time-window starting at t1 and ending at t2;
however , we totally ignore what happened before t1 and what will happen after t2.

SOLUTION: To make PERIODIC the “Time limited” signal
Example 1:

Time limited signal

t1 t2

Signal made PERIODIC with period T  (T = t2 – t1)
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Example 1 cont’

Decaying sine-wave approximate frequency: 1000 Hz  (10 samples/cycle)

256 samples for 1 period of the periodic signal  T = 100µs·256 = 25.6ms (≈ 40Hz)

Fourier Series coefficient magnitudes: 

0 10 20 30 40 50 60 70 80 90 1000

5

10
g

Harmonic number

Fseries n

n

25 · 40 = 1000 Hz
(harmonic 24 or 25 multiplied 
by fundamental frequency)

0Hz                                  1kHz                                    2kHz                                       3kHz 4kHz

0 20 40 60 80 10040

35

30

25

20

Number of samples (ts = 100 µs)
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Potential problems due to the time-limited signal made periodic:

fs/2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 10 4

Magnitude Spectrum after Sampling

Frequency [Hz]

Discontinuities Generate unwanted high frequencies components

0 100 20010

0

10



256 0 256 51210

0

10

Example 2:
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Example 3: Pure sine-wave   a) Integer number of periods

Sampling frequency: fs = 1.024 MHz, number of samples: N =  1024

0 10 20 30 40 50 60 70 80 90 1001

0

1
Sampled 8kHz sinewave

samples

0 100 200 300 400 500 600 700 800 900 10001

0

1
Sampled 8kHz sinewave

samples

time [s]
0.001 5 10 4 0 5 10 4 0.001 0.0015 0.002

1

0

1

8 kHz sine-wave Acquisition window
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Tw: acquisition time window, ts: sampling interval  Tw = 

 Fundamental frequency: ∆f =

Example 3: Pure sine-wave  b) Non-integer number of periods

Magnitude of Fourier Coefficients

0 5 10 15 20 25 30 35 400

5

10

15

Harmonic number
Hn

8 kHz

0 5 10 15 20 25 30 35 400

5

10

15

Harmonic number
Hn

7.5 kHz

Discontinuities in the 
time-domain  many 
spectral components

N · ts = N / fs

1 / Tw = fs / N = 1 kHz 

7.5 kHz sine-wave

0.001 5 10 4 0 5 10 4 0.001 0.0015 0.002
1

0

1

Tw
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SOLUTION: WINDOWING

0 10 20 30 400

2

4

6

8
g

Harmonic number
Hn

Magnitude of Fourier 
Coefficients

xwn A sin
2 
128

n
7500
8000










 0.5 1 cos
2  n
1024





















200 100 0 100 200 300 400 500 600 700 800 900 1000 11001

0

1
windowed sampled 7.5 kHz sine + period.

0 100 200 300 400 500 600 700 800 900 10001

0

1
Sampled 7.5kHz sinewave

samples

0 100 200 300 400 500 600 700 800 900 10000

1

2
Cosine type window 

samples

0 100 200 300 400 500 600 700 800 900 10001

0

1
Windowed sampled 7.5kHz sinewave

samples
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WINDOWING DOWNSIDE:

x(t) xw(t)X

w(t)   window

x(t) · w(t) = xw(t)  

 X(jω) * W(jω) = XW(jω)

0 5 10 15 20 25 30 35 400

5

10

15

Harmonic number
Hn

7.5 kHz without
windowing

0 10 20 30 400

2

4

6

8
g

Harmonic number
Hn

7.5 kHz with
windowing

Frequency domain convolution 
of the “window spectrum” with 
the signal spectrum!

 Broadening of the signal spectrum
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MATHEMATICAL APPROACH OF THE DFT
Basic concept:
If f(t) is our continuous waveform, fd(t) is its discretized version:

Where ts is the time between consecutive samples. By definition, the Fourier Transform of fd(t) is:

Previously, we introduced a time-limitation. The simplest way to do this is to set the lower bound of
the summation at 0 and the upper bound at N-1, thus limiting the total number of samples considered
to N. Rewriting Fd() gives:

f(t)  fd t( )





n

f n ts( )  t n ts( )


F fd t( )( ) Fd ( )





t





n

f n ts( )  n n ts( ) e j  t








d Fd ( )





n

f n ts( ) e j  n ts




WDFTFdw ( )

0

N 1

n

f n ts( ) e j  n ts
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The letter W used to characterize this new definition refers to ‘window’ since our discretized
waveform f(n·ts) is effectively windowed, that is, multiplied by a time-window function. In order to
illustrate the implication of the WDFT, consider a pulse represented by 8 equally spaced
samples (N=8):

From this set of samples, we get the following spectrum (with  ts = 1) :

The periodicity in  comes from the sampling theorem (period: 2/ts = s). Since the
theoretical Power Spectrum (from its Fourier transform) of a pulse expend from - to + , that
produces a noticeable aliasing (blue) !

10 8 6 4 2 0 2 4 6 8 10
0

2

4

Fdw ( )



0      1       2      3      4      5      6       7     n

1
Fdw( )

0

7

n

f n ts( ) e j  n ts


1 e j  0 ts 1 e j  1 ts 1 e j  2 ts 1 e j  3 ts
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If the initial waveform is artificially made periodic with a period of 8ts, then we can
compute the Fourier coefficients by using the definition of the Fourier series. The
next figures compare the spectrum obtained by the two approaches: Fourier Series
Coefficients and Discrete Fourier Transform.

It can be easily shown that the Fourier Series Coefficients can be 
obtained by simply sampling the Discrete Fourier Transform.

What is commonly referred to as the Discrete Fourier Transform (DFT) is, in reality, a Discrete-
Time Fourier Series (DTFS) derived after transforming a limited number of samples (8 in our
example) into a discrete periodic waveform. The fundamental frequency of this new signal is
1/(N·ts). Thus, the spectral lines will appear at m/(N·ts) Hz where m is an integer.

Fourier Series

0 1 2 3 4 5 6 7 8
0

2

4

m

0 1 2 3 4 5 6
0

2

4



Fdw ( )

Discrete Fourier Transform
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As already mentioned in the beginning of this chapter, due to the limited number of samples
used in the computation of the WDFT, numerous problems can appear that one has to be
aware of.

So finally, we can write the DTFS or DFT in the most common form as:

The inverse DFT is:

DFTF
2  m
N ts









F m( )

0

N 1

n

f n ts( ) e

j 2  m n
N



InvDFTf n ts( )
1
N

0

N 1

m

F m( ) e

j2  m n
N
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SIMPLE DFT APPLICATIONS #1  (integer number of cycle)

f(t) = cos(2t) ; a cosine function with a period of 1s, sampled every ts second, Tw = ts· (N-1)

N = 16, ts = 1/16  T = 1s

t   n · ts
Tw0 0.2 0.4 0.6 0.8

1

0

1

cos 2  t 

t

0 5 10 15
0

5

10

Fm

m

0 5 10 15
1

0

1

cos 2  n ts 

n

Fm
0

N 1

n

cos 2  n ts  e
j 2  m n
N
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0 5 10 15
1

0

1

cos 2  n ts 

n

SIMPLE DFT APPLICATIONS #2 (non-integer number of cycle)

f(t) = cos(2t) ;   N = 16, ts = 1/12  Tw = 1.25s

Tw0 0.5 1
1

0

1

cos 2  t 

t

0 5 10 15
0

5

10

Fm

Since the number of periods used to compute the WDFT is not an integer number, a discontinuity in the time
domain is created, thus generating artifacts (unwanted high frequencies spectral components) in the power
spectrum.

In order to solve this problem, various window” types have been proposed, each one of
them with particular benefits and draw-backs!! The optimum choice will depend upon the
features one wishes to emphasize.

Fm
0

N 1

n

cos 2  n ts  e
j 2  m n
N
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FAST FOURIER TRANSFORM (FFT)

Matrix formulation

The FFT is simply an algorithm that can compute the discrete Fourier transform much more rapidly than
other available algorithms. In the case of the DFT, the approximate number of multiplication grows with the
square of N. If N can be written as 2K (where K is an integer), a substantial saving can be achieved on the number
of multiplication which becomes in the order of : 2 N log2 N. Many algorithms have been designed and the interested
reader is encouraged to refer to one of the classical text books covering this topic. A simple matrix factoring example
is used to intuitively justify the FFT algorithm.

Consider the discrete Fourier transform: F m( )

0

N 1

n

f0 n( ) e

j 2  m n
N



m 0 N 18-1

(8-1) describes the computation of N equations. Let  N = 4 and W e

j 2  m n
N8-2

F 0( ) f0 0( ) W
0 f0 1( ) W

0 f0 2( ) W
0 f0 3( ) W

0

F 1( ) f0 0( ) W
0 f0 1( ) W

1 f0 2( ) W
2 f0 3( ) W

3

F 2( ) f0 0( ) W
0 f0 1( ) W

2 f0 2( ) W
4 f0 3( ) W

6

F 3( ) f0 0( ) W
0 f0 1( ) W

3 f0 2( ) W
6 f0 3( ) W

9

 8-3
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F 2( )

F 3( )













W0

W0

W0

W0
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W1
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W0

W2

W4

W6

W0

W3

W6

W9















f 0 0( )

f 0 1( )

f 0 2( )

f 0 3( )













 8-4

(8-4) reveals that since W and fo(n) are complex matrices, thus N2 complex multiplication and N (N-1)
complex additions are necessary to perform the required matrix computation.
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INTUITIVE DEVELOPMENT

To illustrate the FFT algorithm, it is convenient to choose the number of sample points of fo(n)
according to the relation N = 2 , where  is an integer. The first step in developing the FFT algorithm
for this example is to rewrite (8-4) as:

Matrix Eq. (8-5) was derived from (8-4) by using the 
relationship Wm·n = Wm·n mod(N). Than:   8-6 W6 = W2

The next step is to factor the square 
matrix in (8-5) as follows:

The method of factorization is based on the theory of the FFT algorithm. It is easily shown that
multiplication of the two matrices of (8-7) yields the square matrix of (8-5) with the exception that
rows 1 and 2 have been interchanged (the rows are numbered 0, 1, 2 and 3).

F 0( )

F 1( )

F 2( )

F 3( )













1

1

1

1

1

W1

W2

W3

1

W2

W0
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1

W3

W2
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f 0 1( )

f 0 2( )

f 0 3( )
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0

1

0
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1

0

1

W0

0

W2

0

0

W0

0

W2

















f0 0( )

f0 1( )

f0 2( )
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8-7
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Having accepted the fact that (8-7) is correct,
although the result is scrambled, one should
then examine the number of multiplication
required to compute the equation. First let:

Element f1(0) is computed by one complex multiplication 
and one complex addition.

Element f1(1) is also determined by one complex multiplication and one complex addition. Only one 
complex addition is required to compute f1(2). This from the fact that  W0 = -W2 ; hence:

where the complex multiplication W0 f0(2) has already been computed in the determination of f1(0). By
the same reasoning, f1(3) is computed by only one complex addition and no multiplications. The
intermediate vector f1(n) is then determined by four complex additions and two complex multiplications.
Let us continue by completing the computation of (8-7):

Term f2(0) is computed by one complex 
multiplication and addition!

f1 0( )

f1 1( )

f1 2( )

f1 3( )
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8-11

f1 0( ) f0 0( ) W0 f0 2( )8-9

f1 2( ) f0 0( ) W2 f0 2( ) f0 0( ) W0 f0 2( )8-10

8-12 f 2 0( ) f 1 0( ) W0 f 1 1( )
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Element f2(1) is computed by one addition because W0 = -W2. By similar reasoning, f2(2) is determined
by one complex multiplication and addition, and f2(3) by only one addition. Thus:

- Computation of F(m) by means of Eq. (8-7) requires a total of:

four complex multiplication and eight complex additions
- Computation of F(m) by (8-4) requires:

sixteen complex multiplication and twelve complex additions

However, the matrix factoring procedure does introduce one discrepancy. That is:

This rearrangement is inherent in the matrix factoring process and is a minor problem because it 
is straightforward to generalize a technique for unscrambling Fscrab(m) and obtain F(m).

Thus, if N can be written as 2K (where K is an integer), a
substantial saving can be achieved on the number of
multiplication which becomes in the order of : 2 N log2 N.

8-13 Fscrab m( )

F 0( )

F 2( )

F 1( )

F 3( )













instead of F m( )

F 0( )

F 1( )

F 2( )

F 3( )
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APPLICATIONS #1  CHOOSING THE SAMPLING FREQUENCY

30dB

20

10

0

-10

-20 2kHz0Hz

30dB

20

10

0

-10

-200Hz 2kHz

fs = 15 kHz

fs = 17.6 kHz
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APPLICATIONS #2   WINDOWING
fs = 15 kHz,  2048 samples
(0) 1.1 kHz, 50V (sinus)
(3) 100Hz, 1V (square-wave) 

No-window after windowing (Hanning)

Power Spectrum 40dB

20

0

-20

-40 4kHz0Hz
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APPLICATIONS #3   ACQUISITION WINDOW (Tw) LENGTH

fs = 15 kHz,  X samples
(0) 1.1 kHz, 50V (sinus)
(3) 100Hz, 1V (square-wave) 

2048 samples

8192 samples

32768 samples
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APPLICATIONS #4   |FFT|    |FFT|2  Power Spectrum 
300 Hz square-wave,  1Vpp   - sampling frequency : 15 kHz

7dBm Power Spectrum

|FFT|44 e-3

|FFT|21.9 e-3

20Log|FFT|-27dB
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APPLICATIONS #5   BLIND FFT INTERPRETATION
Consider the following Power Spectrum (red and green):

What signals produced these spectrums?

2.5kHz300Hz

Chirp (500 Hz  2 kHz) + Band-passed filtered (500Hz  2 kHz) Gaussian noise

0 140ms

Band-passed filtered (500Hz  2 kHz) Gaussian noise

140ms0

1.05kHz
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Problem 8.1

In p.8-14 , prove that  |F1| = 8

PROBLEMS

Problem 8.2

With  f(nT) = (t – 5T)  and  N = 16, determine Fm  for  0  m < 8

Problem 8.3
With N = 8, compute the module, the real and imaginary part of F(m) for 0  m < 4

f(0) = f(2) = f(4) = f(6) = 1    and  f(1) = f(3) = f(5) = f(7) = -1

Problem 8.4 (SystemView)
The input signal x(t) of an acquisition system has the following form :

x(t) = A sin(0 t) + B  Sqw(t) ,    Sqw(t) : symmetrical square-wave of 1 ms period  

The sampling rate (fs) can be chosen between 50 kHz and 100 kHz and f0 is smaller then 10 kHz.

Draw several possible FFT plots (magnitude) you may obtain when varying the following 
parameters:

fs,      N,      with and without windowing,     f0,     A/B
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Problem 8.5 (SystemView)
The input signal x(t) of an acquisition system has the following form :

x(t) = A sin(0 t) + B sin(1 t) + C sin(2 t) + D sin(3 t) 

with f0 = 1 kHz, f1 = f0 + f,  f2 = f1 + f,  f3 = f2 + f,          f = 50 Hz

A, B C and D can take the following values: +1 or 0 (constant over the sampling window)

Assume that   fs = 1/T = 12 kHz, how do you choose N? 

PROBLEMS

Problem 8.6

Problem 8.7


